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Abstract. We consider the two point correlation function of a scalar current in the QCD sum rule approach
to estimate the overlap amplitude of the a0-meson. We then employ QCD sum rules to calculate the coupling
constants gωa0γ and gρa0γ by studying the three point a0ωγ- and a0ργ-correlation functions.

1 Introduction

The low-mass scalar mesons have fundamental importance
in understanding the theory and phenomenology of low
energy QCD. From the experimental point of view, the
isoscalar f0(980) and isovector a0(980) are well estab-
lished, but the nature and the quark substructure of these
scalar mesons, the question whether they are conventional
qq states [1], KK molecules [2], or multiquark exotic q2q2

states [3] has been a subject of controversy. On the other
hand, since they are relevant hadronic degrees of freedom,
besides the questions of their nature, the roles of scalar
mesons in the hadronic processes must be studied.

The radiative decay processes of the type V 0 → P 0P 0γ
where V and P belong to the lowest multiplets of the
vector (V ) and pseudoscalar (P ) mesons have become a
subject of renewed interest, because they offer the possi-
bility of investigating the new physics features governing
meson physics in the low energy region. Although these
rare decays have small branching ratios due to the ab-
sence of bremsstrahlung radiation, their study offers an
opportunity to test the theoretical ideas about the inter-
esting mechanisms of these decays, as well as to shed light
on the structure of intermediate states involved in these
decays. Particularly interesting are the exchange mecha-
nisms of scalar resonances contributing to these decays.
The radiative decays ρ0 → π0ηγ and ω → π0ηγ were
studied using a low energy effective Lagrangian approach
with gauged Wess–Zumino terms [4], and later by using
standard Lagrangians obeying a SU(3) symmetry [5]. In
both of these calculations, scalar meson intermediate state
contributions were neglected and the contributions of in-
termediate vector mesons were taken into account. How-
ever, it is of interest to study the contribution of the a0-
intermediate state to these decays as well, and for that
knowledge of the a0ωγ- and a0ρ0γ-vertices is needed.
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In this work, we estimate the coupling constants ga0ργ

and ga0ωγ by employing QCD sum rules, which provide an
efficient method to study hadronic properties and which
have been employed to study hadronic observables such as
decay constants and form factors in terms of non-pertur-
bative contributions proportional to the quark and gluon
condensates [6–8].

2 Analysis and results

The QCD sum rules approach [6–8] is a model indepen-
dent method to study the properties of hadrons through
correlation functions of appropriately chosen currents. We
choose the interpolating currents for the ω- and ρ-mesons
as jω

µ = (1/2)(uγµu+ dγµd) and jρ
µ = (1/2)(uγµu − dγµd)

respectively, and for the a0-meson as ja0 = (1/2)(uu−dd)
[6,7], and we work in the SU(2) flavor limit mu = md =
mq. In the sum rule, the overlap amplitude of the a0-
meson, λa0 = 〈0|ja0 |a0〉, is needed. In a previous work
[9] we studied the scalar–isoscalar σ-meson by considering
the two point scalar current correlation function. Since
perturbative and QCD-vacuum condensate contributions
to the scalar current correlation functions cannot distin-
guish between isoscalar and isovector channels, we follow
here the same method and we study the scalar–isovector
a0-meson by considering the two point current correlation
function

Π(p2) = i
∫
d4xeip.x〈0|T{ja0(x)j

†
a0
(0)}|0〉. (1)

The two-loop expression for the scalar current correlation
function Π(p2) in perturbative QCD was calculated [10],
and for light quark systems in the limit mq = 0 it is given
by the expression

Πpert(p2) =
3

16π2 (−p2) ln
(−p2

µ2

)

×
{
1 +

αs

π

[
17
3

− ln
(−p2

µ2

)]}
. (2)
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QCD-vacuum condensate contributions to the scalar cur-
rent correlation function Π(p2) were obtained by the op-
erator product method [11] in the same limit, mq = 0:

Π(p2 = −Q2)cond =
3
2Q2 〈mqqq〉+ 1

16πQ2 〈αsG
2〉

− 88π
27Q4 〈αs(qq)2〉. (3)

Let us note that the term 〈mqqq〉 is independent of the
quark mass since it is given as −f2

πm2
π/4 through the Gell-

Mann–Oakes–Renner relation [6].
The correlation function Π(p2) satisfies the standard

subtracted dispersion relation [6]

Πpert(p2) = p2
∫ ∞

0

ds

s(s − p2)
ρ(s) +Π(0), (4)

where the spectral density function is given by ρ(s) =
(1/π)ImΠ(s). The spectral density contains a single sharp
pole πλa0δ(s − m2

a0
) corresponding to the coupling of the

a0-meson to the scalar current. The continuum contribu-
tion of the higher states to the spectral density is esti-
mated to be ρ = ρh(s)θ(s − s0) where s0 denotes the
continuum threshold and ρh is given by the expression
ρh(s) = (1/π)ImΠOPE(s) whereΠOPE(s) is obtained from
(2) and (3): ΠOPE(s) = Πpert(s) + Πcond(s). After per-
forming the Borel transformation we obtain the QCD sum
rule for the overlap amplitude λa0 ; it is

λ2
a0
e−m2

a0
/M2

=
3

16π2 M4

{[
1−

(
1 +

s0

M2

)
e−s0/M2

]

×
(
1 +

αs(M)
π

17
3

)
− 2

αs(M)
π

∫ s0/M2

0
w lnwe−wdw

}

+
3
2
〈mqqq〉+ 1

16π
〈αsG

2〉 − 88π
27M2 〈αs(qq)2〉. (5)

In the numerical evaluation of (5) we use 〈mqqq〉 =
(−0.82±0.10)×10−4GeV4, 〈αsG

2〉=(0.038±0.011)GeV4,
〈αs(qq)2〉 = −0.18 × 10−3GeV6 [8,12]. The threshold is
chosen below a possible a0(1450) pole and it is varied
between s0 = 1.6–1.7GeV2. Since the Borel parameter
has no physical meaning, we look for a range of its val-
ues where the sum rule is almost independent of M2; we
choose the interval of values of the Borel parameter M2

as 1.2–2.0GeV2. The overlap amplitude λa0 as a func-
tion of M2 in this interval for different values of s0 is
shown in Fig. 1 from which by choosing the middle value
M2 = 1.6GeV2 in the interval of variation, we obtain the
overlap amplitude as λa0 = 0.21 ± 0.05GeV2 where we
include the uncertainty due to the variation of the contin-
uum threshold and the Borel parameter M2 as well as the
uncertainty due to errors attached to the estimated values
of condensates as quoted above.

In order to derive the QCD sum rule for the coupling
constants ga0ωγ and ga0ργ , we consider the three point
correlation function

Tµν(p, p′) =
∫
d4xd4yeip

′.ye−ip.x

Fig. 1. The overlap amplitude λa0 as a function of the Borel
parameter M2

× 〈0|T{jγ
µ(0)j

V
ν (x)ja0(y)}|0〉, (6)

where jγ
µ = (euuγµu+ eddγµd) is the electromagnetic cur-

rent with eu and ed being the quark charges, and jV
ν is

the interpolating current for the ω- or ρ0-meson.
In order to obtain the phenomenological part of the

sum rule, we consider the double dispersion relation for
the vertex function Tµν ,

Tµν(p, p′) =
1
π2

∫
ds1

∫
ds2

ρµν(s1, s2)
(p2 − s1)(p′2 − s2)

, (7)

where the possible subtraction terms are neglected since
they will not make any contribution after a double Borel
transform. For low values of s1 and s2, the spectral func-
tion ρµν(s1, s2) contains a term proportional to the double
δ-function δ(s1 − m2

V )δ(s2 − m2
a0
), corresponding to the

transition a0 → V γ where V denotes the ω- or ρ0-meson.
We therefore saturate the dispersion relation satisfied by
the vertex function Tµν by these lowest lying meson states
in the vector and the scalar channels, and in this way we
obtain for the physical part

Tµν(p, p′) =
〈0|jV

ν |V 〉〈V (p)|jγ
µ |a0(p′)〉〈a0|ja0 |0〉

(p2 − m2
V )(p′2 − m2

a0
)

+ ..., (8)

where the contributions from the higher states and the
continuum is denoted by dots. In this expression the over-
lap amplitude λa0 = 〈a0|ja0 |0〉 of the a0-meson has been
determined in previous sections. The overlap amplitude
λV of the vector meson is defined by 〈0|jV

ν |V 〉 = λV uν ,
where uν is the polarization vector of the vector meson ω
or ρ0. The matrix element of the electromagnetic current
is given by

〈V (p)|jγ
µ |a0(p′)〉 = −i e

mV
ga0V γK(q2)(p · quµ − u · qpµ),

(9)
where q = p−p′, andK(q2) is a form factor withK(0) = 1.
This expression defines the coupling constant through the
effective Lagrangian
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Fig. 2a–c. Feynman diagrams for the a0V γ-vertex: a bare-
loop diagram, b d = 3 operator corrections, c d = 5 operator
corrections. The dotted lines denote gluons

L = e

mV
ga0V γ∂αV β(∂αAβ − ∂βAα)a0, (10)

describing the a0V γ-vertex.
The theoretical part of the sum rule is obtained by

calculating the perturbative contribution and the power
corrections from operators of different dimensions to the
three point correlation function Tµν . For the perturba-
tive contribution we consider the lowest order bare-loop
diagrams shown in Fig. 2a. Furthermore, we consider the
power corrections from the operators of different dimen-
sions that are proportional to the vacuum condensates
〈qq〉, 〈qσ · Gq〉 and 〈(qq)2〉. We do not consider the gluon
condensate contribution proportional to 〈G2〉, since it is
estimated to be negligible for light quark systems. We per-
form the calculations of the power corrections in the fixed
point gauge [13]. We work in the limit mq = 0, and in this
limit the perturbative bare-loop diagram does not make
any contribution. Moreover, in this limit only operators of
dimensions d = 3 and d = 5 make contributions that are
proportional to 〈qq〉 and 〈qσ · Gq〉, respectively. The rele-
vant Feynman diagrams for power corrections are shown
in Figs. 2b,c. If we consider the gauge invariant structure
(pµqν − p · qgµν), we obtain the power corrections of di-
mensions d = 3 and d = 5:

C3 = i
3
4
1
p2

1
p′2 (eu〈uu〉+ ed〈dd〉) (11)

and

C5 =
(
i
9
32

1
p4

1
p′2 + i

1
32

1
p2

1
p′4

)
× (eu〈gsuσ · Gu〉+ ed〈gsdσ · Gd〉). (12)

After performing a double Borel transform with re-
spect to the variables Q2 = −p2 and Q′2 = −p′2, and by
considering the gauge invariant structure (pµqν − p · qgµν)
for the phenomenological part as well, we obtain the sum
rule for the coupling constant ga0V γ :

ga0V γ = −eq〈uu〉 3mV

λa0λV
em

2
a0

/M2

em
2
V /M ′2

×
(
3
4

− 9
32

m2
0
1

M2 − 1
32

m2
0
1

M ′2

)
, (13)

Fig. 3. The coupling constant ga0ωγ as a function of the Borel
parameter M2 for different values of M ′2

where eq = (eu+ed) for the ρ0-meson and eq = (eu−ed) for
the ω-meson, and we use the relations 〈qσ · Gq〉 = m2

0〈qq〉
and 〈uu〉 = 〈dd〉. For the numerical evaluation of the sum
rule we use the values m2

0 = (0.8 ± 0.02)GeV2, 〈uu〉 =
(−0.014±0.002)GeV3 [8,14], and mρ = 0.770GeV, mω =
0.782GeV. For the overlap amplitude λa0 we use the value
λa0 = (0.21 ± 0.05)GeV2 that we have estimated previ-
ously. We determine the overlap amplitude λV for the ω-
and ρ0-meson from the measured leptonic decay widths
Γ (V → e+e−) [15]; thus we use their experimental values
λρ = (0.117±0.003)GeV2 and λω = (0.108±0.002)GeV2.
In order to analyze the dependence of ga0V γ on the Borel
parameters M2 and M ′2, we study the independent vari-
ations of M2 and M ′2 in the interval 0.6GeV2 ≤ M2,

M ′2 ≤ 1.4GeV2 as these limits determine the allowed
interval for the vector channel [16]. The variation of the
coupling constant gωa0γ as a function of the Borel param-
eter M2 for different values of M ′2 is shown in Fig. 3,
examination of which indicates that it is quite stable with
these reasonable variations of M2 and M ′2. We choose the
middle value M2 = 1GeV2 for the Borel parameter in its
interval of variation and we obtain the coupling constant
ga0ωγ = (0.75 ± 0.20). We indicate the error arising from
the numerical analysis of the sum rule as well as from the
uncertainties in the estimated values of the vacuum con-
densates. In Fig. 4 we present the variation of the coupling
constant ga0ργ as a function of the Borel parameter M2

for different values of M ′2. Following a similar analysis
as in the case of ga0ωγ , we obtain the coupling constant
ga0ργ = (2.00 ± 0.50). The values for the coupling con-
stants ga0ωγ and ga0ργ that we obtain are in agreement
with the expected SU(3) ratio ga0ργ : ga0ωγ = 3 : 1.

In our analysis, we use for the overlap amplitudes λω

and λρ the values that we obtain from the experimen-
tal electronic decay widths of the ω- and ρ0-mesons. On
the other hand, it may be argued that in a QCD sum
rule calculation it is more appropriate to use the values
of the overlap amplitudes that are also determined within
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Fig. 4. The coupling constant ga0ργ as a function of the Borel
parameter M2 for different values of M ′2

the framework of the QCD sum rule method. Electromag-
netic decays of vector mesons using QCD sum rules were
studied in [17], and in this analysis the authors used the
values of the overlap amplitudes λω = (0.16± 0.01)GeV2

and λρ = (0.17 ± 0.01)GeV2 that they also determined
utilizing the QCD sum rules. If we use instead these val-
ues of the overlap amplitudes in our calculation, we obtain
the coupling constants ga0ωγ = 0.45 ± 0.10 and ga0ργ =
1.30± 0.30, which are consistent with our above results.

In the investigations of the role of the a0-meson in
hadronic processes, the relevant coupling constants of the
a0-meson are needed. In this work, we employed the QCD
sum rule approach to estimate the coupling constants
ga0ωγ and ga0ργ . We feel that the studies of the differ-
ent coupling constants of the a0-meson should be contin-
ued. In particular QCD sum rule calculations should be

improved by taking into account the high order correc-
tions to the perturbative part of the three point correla-
tion function and also to the two point correlation function
employed in the estimation of the overlap amplitude of the
a0-meson.
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