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Abstract. We consider the two point correlation function of a scalar current in the QCD sum rule approach
to estimate the overlap amplitude of the ap-meson. We then employ QCD sum rules to calculate the coupling
constants guwagy and gpaqy by studying the three point apwy- and agpy-correlation functions.

1 Introduction

The low-mass scalar mesons have fundamental importance
in understanding the theory and phenomenology of low
energy QCD. From the experimental point of view, the
isoscalar fp(980) and isovector ag(980) are well estab-
lished, but the nature and the quark substructure of these
scalar mesons, the question whether they are conventional
qq states [1], KK molecules [2], or multiquark exotic ¢?g>
states [3] has been a subject of controversy. On the other
hand, since they are relevant hadronic degrees of freedom,
besides the questions of their nature, the roles of scalar
mesons in the hadronic processes must be studied.

The radiative decay processes of the type V0 — PO PO~
where V' and P belong to the lowest multiplets of the
vector (V') and pseudoscalar (P) mesons have become a
subject of renewed interest, because they offer the possi-
bility of investigating the new physics features governing
meson physics in the low energy region. Although these
rare decays have small branching ratios due to the ab-
sence of bremsstrahlung radiation, their study offers an
opportunity to test the theoretical ideas about the inter-
esting mechanisms of these decays, as well as to shed light
on the structure of intermediate states involved in these
decays. Particularly interesting are the exchange mecha-
nisms of scalar resonances contributing to these decays.
The radiative decays p° — 7%7y and w — 71y were
studied using a low energy effective Lagrangian approach
with gauged Wess—Zumino terms [4], and later by using
standard Lagrangians obeying a SU(3) symmetry [5]. In
both of these calculations, scalar meson intermediate state
contributions were neglected and the contributions of in-
termediate vector mesons were taken into account. How-
ever, it is of interest to study the contribution of the ag-
intermediate state to these decays as well, and for that
knowledge of the agw~y- and agp®y-vertices is needed.
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In this work, we estimate the coupling constants gq,~
and ggqwy by employing QCD sum rules, which provide an
efficient method to study hadronic properties and which
have been employed to study hadronic observables such as
decay constants and form factors in terms of non-pertur-
bative contributions proportional to the quark and gluon
condensates [6-8].

2 Analysis and results

The QCD sum rules approach [6-8] is a model indepen-
dent method to study the properties of hadrons through
correlation functions of appropriately chosen currents. We
choose the interpolating currents for the w- and p-mesons
as ji = (1/2)(Wyuu+ dyud) and jf; = (1/2)(uy,u— dy,d)
respectively, and for the ag-meson as j,, = (1/2)(7u— dd)
[6,7], and we work in the SU(2) flavor limit m, = mq =
mgq. In the sum rule, the overlap amplitude of the ao-
meson, Aq, = (0]ja,|a0), is needed. In a previous work
[9] we studied the scalar—isoscalar o-meson by considering
the two point scalar current correlation function. Since
perturbative and QCD-vacuum condensate contributions
to the scalar current correlation functions cannot distin-
guish between isoscalar and isovector channels, we follow
here the same method and we study the scalar—isovector
ap-meson by considering the two point current correlation
function

o2 =i / A6 (0T (oo ()71, (0)}0). (1)

The two-loop expression for the scalar current correlation
function II(p?) in perturbative QCD was calculated [10],
and for light quark systems in the limit m, = 0 it is given
by the expression
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QCD-vacuum condensate contributions to the scalar cur-

rent correlation function IT(p?) were obtained by the op-

erator product method [11] in the same limit, m, = 0:
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Let us note that the term (m,qq) is independent of the
quark mass since it is given as — f2m?2 /4 through the Gell-
Mann—Oakes—Renner relation [6].

The correlation function IT(p?) satisfies the standard
subtracted dispersion relation [6]

Hpert(pQ) =p’ /OOO S(Sd_SPQ)P(S) + I1(0), (4)

where the spectral density function is given by p(s) =
(1/m)ImII(s). The spectral density contains a single sharp
pole mAq,8(s —m3 ) corresponding to the coupling of the
ag-meson to the scalar current. The continuum contribu-
tion of the higher states to the spectral density is esti-
mated to be p = pr(s)0(s — sp) where sy denotes the
continuum threshold and pj is given by the expression
pn(s) = (1/m)ImIIopr(s) where ITopg(s) is obtained from
(2) and (3): Hopr(s) = Ipert(s) + Heond(s). After per-
forming the Borel transformation we obtain the QCD sum
rule for the overlap amplitude A, ; it is
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In the numerical evaluation of (5) we use (mg,qq) =
(—0.82£0.10) x 10~* GeV*, (asG?) =(0.03840.011) GeV*,
(ag(Gq)?) = —0.18 x 1073 GeVP [8,12]. The threshold is
chosen below a possible ag(1450) pole and it is varied
between sy = 1.6-1.7GeV?2. Since the Borel parameter
has no physical meaning, we look for a range of its val-
ues where the sum rule is almost independent of M?; we
choose the interval of values of the Borel parameter M?
as 1.2-2.0 GeV2. The overlap amplitude \,, as a func-
tion of M? in this interval for different values of sq is
shown in Fig.1 from which by choosing the middle value
M? = 1.6 GeV? in the interval of variation, we obtain the
overlap amplitude as \,, = 0.21 £ 0.05 GeV? where we
include the uncertainty due to the variation of the contin-
uum threshold and the Borel parameter M? as well as the
uncertainty due to errors attached to the estimated values
of condensates as quoted above.

In order to derive the QCD sum rule for the coupling
constants gggwy and gaypy, We consider the three point
correlation function

T (p, ) = / dlzd*ye®’ ve i
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Fig. 1. The overlap amplitude A, as a function of the Borel
parameter M?>
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where j7 = (e, Wy, u+ eady,d) is the electromagnetic cur-

rent with e, and eg being the quark charges, and jV is
the interpolating current for the w- or p°-meson.

In order to obtain the phenomenological part of the

sum rule, we consider the double dispersion relation for

the vertex function 71},,,

/dSl/dSQ

where the possible subtraction terms are neglected since
they will not make any contribution after a double Borel
transform. For low values of s; and ss, the spectral func-
tion p,. (81, $2) contains a term proportional to the double
é-function §(sy — m3,)d(sz — m?2 ), corresponding to the
transition ag — V+ where V denotes the w- or p’-meson.
We therefore saturate the dispersion relation satisfied by
the vertex function 7),, by these lowest lying meson states
in the vector and the scalar channels, and in this way we
obtain for the physical part
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where the contributions from the higher states and the
continuum is denoted by dots. In this expression the over-
lap amplitude A\,, = (ao|ja,|0) of the ag-meson has been
determined in previous sections. The overlap amplitude
Ay of the vector meson is defined by (0[5Y|V) = Avu,,
where u,, is the polarization vector of the vector meson w
or p°. The matrix element of the electromagnetic current
is given by

V()ljllao(®)) = —i—
my

U qpp),

(9)
where ¢ = p—p/, and K(¢?) is a form factor with K (0) = 1.
This expression defines the coupling constant through the
effective Lagrangian

Jaov+K (@) (p - qu, —
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Fig. 2a—c. Feynman diagrams for the aoV~-vertex: a bare-
loop diagram, b d = 3 operator corrections, ¢ d = 5 operator
corrections. The dotted lines denote gluons

L= gayyy0°VP(0aAs — dsAn)ag,  (10)
my
describing the agV y-vertex.

The theoretical part of the sum rule is obtained by
calculating the perturbative contribution and the power
corrections from operators of different dimensions to the
three point correlation function 7). For the perturba-
tive contribution we consider the lowest order bare-loop
diagrams shown in Fig. 2a. Furthermore, we consider the
power corrections from the operators of different dimen-
sions that are proportional to the vacuum condensates
(qq), {(go - Gq) and ((gq)?). We do not consider the gluon
condensate contribution proportional to (G?), since it is
estimated to be negligible for light quark systems. We per-
form the calculations of the power corrections in the fixed
point gauge [13]. We work in the limit m, = 0, and in this
limit the perturbative bare-loop diagram does not make
any contribution. Moreover, in this limit only operators of
dimensions d = 3 and d = 5 make contributions that are
proportional to (gg) and (o - Gq), respectively. The rele-
vant Feynman diagrams for power corrections are shown
in Figs. 2b,c. If we consider the gauge invariant structure
(Pudv — P - q9uv), We obtain the power corrections of di-
mensions d = 3 and d = 5:

(11)

and

oo (211 11
RNV P

x (eu{gstio - Gu) + eq(gsdo - Gd)). (12)

After performing a double Borel transform with re-
spect to the variables Q2 = —p? and Q'> = —p’?, and by
considering the gauge invariant structure (p,q, —p-qg,u.)
for the phenomenological part as well, we obtain the sum
rule for the coupling constant g,,v~:
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Fig. 3. The coupling constant ga,.~ as a function of the Borel
parameter M? for different values of M &
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where e, = (e,+eq4) for the p-meson and e, = (e, —eq) for
the w-meson, and we use the relations (go - Gq) = m3(qq)
and (uu) = (dd). For the numerical evaluation of the sum
rule we use the values m3 = (0.8 & 0.02) GeV?, (Tu) =
(—0.01440.002) GeV? [8,14], and m,, = 0.770 GeV, m,, =
0.782 GeV. For the overlap amplitude A,, we use the value
Aag = (0.21 £ 0.05) GeV? that we have estimated previ-
ously. We determine the overlap amplitude Ay for the w-
and p’-meson from the measured leptonic decay widths
I'(V — ete™) [15]; thus we use their experimental values
A, = (0.11740.003) GeV?2 and A, = (0.1082:0.002) GeV?>.
In order to analyze the dependence of g,,1 4 on the Borel

parameters M? and M’ 2, we study the independent vari-
ations of M2 and M’? in the interval 0.6 GeV? < M?2,
M’ <14 GeV? as these limits determine the allowed
interval for the vector channel [16]. The variation of the
coupling constant g, as a function of the Borel param-

eter M? for different values of M’? is shown in Fig. 3,
examination of which indicates that it is quite stable with
these reasonable variations of M2 and M’?. We choose the
middle value M? = 1GeV? for the Borel parameter in its
interval of variation and we obtain the coupling constant
Gapwy = (0.75 £ 0.20). We indicate the error arising from
the numerical analysis of the sum rule as well as from the
uncertainties in the estimated values of the vacuum con-
densates. In Fig. 4 we present the variation of the coupling
constant gu,,y as a function of the Borel parameter M 2

for different values of M’ Following a similar analysis
as in the case of g,,.~, We obtain the coupling constant
Jagpy = (2.00 £ 0.50). The values for the coupling con-
stants gagwy and geypy that we obtain are in agreement
with the expected SU(3) ratio gaypy : Jagwy = 3 : 1.

In our analysis, we use for the overlap amplitudes A,
and ), the values that we obtain from the experimen-
tal electronic decay widths of the w- and p’-mesons. On
the other hand, it may be argued that in a QCD sum
rule calculation it is more appropriate to use the values
of the overlap amplitudes that are also determined within
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Fig. 4. The coupling constant g.,,~ as a function of the Borel
parameter M? for different values of M 2

0.5

0.6

the framework of the QCD sum rule method. Electromag-
netic decays of vector mesons using QCD sum rules were
studied in [17], and in this analysis the authors used the
values of the overlap amplitudes A, = (0.16 & 0.01) GeV?
and A\, = (0.17 £ 0.01) GeV? that they also determined
utilizing the QCD sum rules. If we use instead these val-
ues of the overlap amplitudes in our calculation, we obtain
the coupling constants gggwy = 0.45 £ 0.10 and ggqpy =
1.30 + 0.30, which are consistent with our above results.
In the investigations of the role of the ag-meson in
hadronic processes, the relevant coupling constants of the
ag-meson are needed. In this work, we employed the QCD
sum rule approach to estimate the coupling constants
Gaowy and gagpy. We feel that the studies of the differ-
ent coupling constants of the ag-meson should be contin-
ued. In particular QCD sum rule calculations should be
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improved by taking into account the high order correc-
tions to the perturbative part of the three point correla-
tion function and also to the two point correlation function
employed in the estimation of the overlap amplitude of the
ap-meson.
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